Tampa Scarecrows

GP: 2 | W: 1 | L: 0 | OTL: 1 | P: 3
GF: 6 | GA: 4 | PP%: 0.00% | PK%: 75.00%
GM : Tyler White | Morale : 39 | Team Overall : N/A
Next Games #30 vs Zurich Lions
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1David Pacan (R)0X100.00505050505050505050505050505050504000
2Gregg Sutch (R)0X100.00505050505050505050505050505050504000
3Gabriel Dumont (R)0XX98.00513567785647505344494858515657874000
4John McCarthy0XX97.00513576717250626039545258546464554000
5Dustin Sylvester (R)0X98.00443578805547485830534957535862794000
6Jamie Tardif0X98.00493672707149495531515156506666474000
7Joel Broda (R)0XX99.00503772697149575331484654505853794000
8Justin Fontaine (R)0X96.00463576805951556230605056556263634000
9Michael Forney (R)0X100.00463583717245404830434050456063714000
10Nicolas Blanchard0X98.00585356667954575431494654496260634000
11Pat Cannone (R)0XX98.00473577776549575945545155536464554000
12Marc-Andre Bourdon (R)0X97.00634362677149585230455265545865794000
13Bob Raymond0X100.00453580696245404530404059486664474000
14Jordan Hill (R)0X100.00543568607646434530404257485853794000
15Marc Cantin (R)0X100.00543568657145404530404055465662873700
16Maxime Fortunus0X98.00473579657049515230474761537064314000
17Nick Tuzzolino (R)0X98.00543564608848434630414857526456554000
18Tyler Eckford0X98.00493577657750625230465060536660474000
Scratches
TEAM AVERAGE98.5050387067684951523548475651606062400
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Tyson Sexsmith (R)100.0050505050505050505050505050504000
2Joacim Eriksson (R)100.0050505050505050505050505050503700
3Jeremy Smith (R)97.0061586365727265666666605854794000
Scratches
TEAM AVERAGE99.005453545557575555555553535160390
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dave Lowry46565253464145CAN462400,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick TuzzolinoTampa Scarecrows (NSH)D21345002620250.00%34120.690000400002000.00%010001.9300000100
2Ben MaxwellNashville BattalionC12022001231066.67%01515.2700000000001040.00%501002.6200000010
3Gabriel DumontTampa Scarecrows (NSH)C/RW2022340453230.00%03417.0800000000000046.15%1311001.1700000000
4Joel BrodaTampa Scarecrows (NSH)C/LW21123001343225.00%03115.830000000000000.00%321001.2600000001
5Justin FontaineTampa Scarecrows (NSH)RW21121004222250.00%04120.9600003000060075.00%462000.9501000001
6Maxime FortunusTampa Scarecrows (NSH)D2022500102210.00%24321.710000400002000.00%009000.9200000000
7Gregg SutchTampa Scarecrows (NSH)RW21011205030033.33%0126.090000000000010.00%000001.6400000000
8John McCarthyTampa Scarecrows (NSH)C/LW2011200127220.00%34221.3500003000160039.39%3342000.4701000000
9Dustin SylvesterTampa Scarecrows (NSH)LW2011100232420.00%03115.940000300001000.00%171000.6300000000
10David PacanTampa Scarecrows (NSH)RW2000100100020.00%02211.3700000000000050.00%200000.0000000000
11Marc-Andre BourdonTampa Scarecrows (NSH)D2000-100421020.00%15125.610000300007000.00%054000.0000000000
12Bob RaymondTampa Scarecrows (NSH)D2000100002100.00%22914.910000000000000.00%001000.0000000000
13Jamie TardifTampa Scarecrows (NSH)RW2000-100511010.00%13718.9900003000010050.00%240000.0000000000
14Jordan HillTampa Scarecrows (NSH)D2000-100020010.00%0199.500000000000000.00%002000.0000000000
15Marc CantinTampa Scarecrows (NSH)D1000100001020.00%01313.850000000000000.00%001000.0000000000
16Michael ForneyTampa Scarecrows (NSH)LW2000100011100.00%2168.480000000001000.00%011000.0000000000
17Nicolas BlanchardTampa Scarecrows (NSH)LW2000-120220000.00%03417.3800003000000033.33%310000.0000000000
18Pat CannoneTampa Scarecrows (NSH)C/RW2000-140634210.00%13718.7100003000010052.63%1960000.0000000000
19Tyler EckfordTampa Scarecrows (NSH)D2000-200133030.00%54623.140000300007000.00%033000.0000000000
Team Total or Average366111720120403741202614.63%2060416.790000390001411143.53%854129000.5602000112
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jeremy SmithTampa Scarecrows (NSH)21010.9441.441250035433000.000220000
Team Total or Average21010.9441.441250035433000.000220000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Bob RaymondTampa Scarecrows (NSH)D258/7/1987No185 Lbs5 ft10NoNoNo2RFAPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$
David PacanTampa Scarecrows (NSH)RW223/31/1991 11:44:47 AMYes218 Lbs6 ft3NoNoNo2ELCPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$
Dustin SylvesterTampa Scarecrows (NSH)LW221/5/1991Yes174 Lbs5 ft6NoNoNo2ELCPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$
Gabriel DumontTampa Scarecrows (NSH)C/RW2010/6/1992Yes170 Lbs5 ft9NoNoNo2ELCPro & Farm571,667$571,667$571,667$571,667$0$0$No571,667$Link
Gregg SutchTampa Scarecrows (NSH)RW212/9/1992 5:15:40 PMYes201 Lbs6 ft2NoNoNo2ELCPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$
Jamie TardifTampa Scarecrows (NSH)RW261/23/1987No205 Lbs6 ft0NoNoNo2RFAPro & Farm600,000$600,000$600,000$600,000$0$0$No600,000$Link
Jeremy SmithTampa Scarecrows (NSH)G224/13/1991Yes171 Lbs6 ft0NoNoNo1ELCPro & Farm845,833$845,833$845,833$845,833$0$0$NoLink
Joacim ErikssonTampa Scarecrows (NSH)G234/9/1990 8:43:04 AMYes189 Lbs6 ft1NoNoNo2RFAPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$
Joel BrodaTampa Scarecrows (NSH)C/LW2111/24/1991Yes203 Lbs6 ft0NoNoNo2ELCPro & Farm550,000$550,000$550,000$550,000$0$0$No550,000$Link
John McCarthyTampa Scarecrows (NSH)C/LW248/9/1988No200 Lbs6 ft1NoNoNo1RFAPro & Farm525,000$525,000$525,000$525,000$0$0$NoLink
Jordan HillTampa Scarecrows (NSH)D223/8/1991Yes204 Lbs6 ft2NoNoNo2ELCPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$
Justin FontaineTampa Scarecrows (NSH)RW2311/6/1989Yes170 Lbs5 ft10NoNoNo2RFAPro & Farm595,000$595,000$595,000$595,000$0$0$No595,000$Link
Marc CantinTampa Scarecrows (NSH)D213/27/1992Yes192 Lbs6 ft1NoNoNo3ELCPro & Farm750,000$750,000$750,000$750,000$0$0$No750,000$750,000$Link
Marc-Andre BourdonTampa Scarecrows (NSH)D219/17/1991Yes206 Lbs6 ft0NoNoNo1ELCPro & Farm875,000$875,000$875,000$875,000$0$0$NoLink
Maxime FortunusTampa Scarecrows (NSH)D277/28/1985No190 Lbs6 ft1NoNoNo1RFAPro & Farm587,500$587,500$587,500$587,500$0$0$NoLink
Michael ForneyTampa Scarecrows (NSH)LW235/14/1990Yes185 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$500,000$566,667$566,667$0$0$No500,000$Link
Nick TuzzolinoTampa Scarecrows (NSH)D251/19/1988Yes225 Lbs6 ft5NoNoNo2RFAPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$Link
Nicolas BlanchardTampa Scarecrows (NSH)LW245/31/1989No206 Lbs6 ft3NoNoNo1RFAPro & Farm512,500$512,500$512,500$512,500$0$0$NoLink
Pat CannoneTampa Scarecrows (NSH)C/RW248/9/1988Yes198 Lbs5 ft10NoNoNo1RFAPro & Farm600,000$600,000$600,000$600,000$0$0$NoLink
Tyler EckfordTampa Scarecrows (NSH)D259/8/1987No210 Lbs6 ft2NoNoNo1RFAPro & Farm525,000$525,000$525,000$525,000$0$0$NoLink
Tyson SexsmithTampa Scarecrows (NSH)G243/19/1989 5:53:27 PMYes195 Lbs5 ft11NoNoNo2RFAPro & Farm400,000$400,000$400,000$400,000$0$0$No400,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2123.10195 Lbs6 ft01.71535,119$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dustin SylvesterBob RaymondGabriel Dumont40122
2Michael ForneyPat CannoneJustin Fontaine30122
3Nicolas BlanchardJohn McCarthyDavid Pacan20122
4Dustin SylvesterJoel BrodaGregg Sutch10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Marc-Andre BourdonBob Raymond40122
2Jordan HillMarc Cantin30122
3Maxime FortunusNick Tuzzolino20122
4Tyler EckfordMarc-Andre Bourdon10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dustin SylvesterGabriel DumontJustin Fontaine60122
2Michael ForneyPat CannoneGabriel Dumont40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Marc-Andre BourdonBob Raymond60122
2Jordan HillMarc Cantin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Gabriel DumontDustin Sylvester60122
2Pat CannoneMichael Forney40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Marc-Andre BourdonBob Raymond60122
2Jordan HillMarc Cantin40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Gabriel Dumont60122Marc-Andre BourdonBob Raymond60122
2Pat Cannone40122Jordan HillMarc Cantin40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Gabriel DumontDustin Sylvester60122
2Pat CannoneMichael Forney40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Marc-Andre BourdonBob Raymond60122
2Jordan HillMarc Cantin40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Dustin SylvesterJoel BrodaGabriel DumontMarc-Andre BourdonBob Raymond
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Dustin SylvesterGabriel DumontJamie TardifMarc-Andre BourdonBob Raymond
Extra Forwards
Normal PowerPlayPenalty Kill
Jamie Tardif, Justin Fontaine, John McCarthyJamie Tardif, Justin FontaineJamie Tardif
Extra Defensemen
Normal PowerPlayPenalty Kill
Maxime Fortunus, Nick Tuzzolino, Tyler EckfordMaxime FortunusMaxime Fortunus, Nick Tuzzolino
Penalty Shots
Gabriel Dumont, Pat Cannone, David Pacan, Gregg Sutch, Jamie Tardif
Goalie
#1 : Tyson Sexsmith, #2 : Joacim Eriksson, #3 : Jeremy Smith


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chicago Icehogs11000000413000000000001100000041321.000471100213017911203258419200.00%20100.00%0132259.09%143737.84%102638.46%422549183215
2Hamilton Hitmen1000000123-1000000000001000000123-110.500246002130249112032912821000.00%2150.00%0132259.09%143737.84%102638.46%422549183215
Total21000001642000000000002100000164230.750611170021304191120354201240200.00%4175.00%0132259.09%143737.84%102638.46%422549183215
_Since Last GM Reset21000001642000000000002100000164230.750611170021304191120354201240200.00%4175.00%0132259.09%143737.84%102638.46%422549183215
_Vs Conference21000001642000000000002100000164230.750611170021304191120354201240200.00%4175.00%0132259.09%143737.84%102638.46%422549183215

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
23SOL161117415420124000
All Games
GPWLOTWOTL SOWSOLGFGA
210000164
Home Games
GPWLOTWOTL SOWSOLGFGA
000000000
Visitor Games
GPWLOTWOTL SOWSOLGFGA
210000164
Last 10 Games
WLOTWOTL SOWSOL
100001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
200.00%4175.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9112032130
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
132259.09%143737.84%102638.46%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
422549183215


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-05-156Tampa Scarecrows4Chicago Icehogs1WBoxScore
2 - 2018-05-1616Tampa Scarecrows2Hamilton Hitmen3LXXBoxScore
3 - 2018-05-1730Zurich Lions-Tampa Scarecrows-
5 - 2018-05-1952Hartford Warriors-Tampa Scarecrows-
7 - 2018-05-2162Tampa Scarecrows-Ann Arbor Icecats-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance0.00%0.00%
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
2 0 - 0.00%0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,123,750$ 1,130,417$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 6 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT